Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Infect Dis ; : 107055, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723889

ABSTRACT

OBJECTIVES: To investigate cases of five Campylobacter jejuni outbreaks and describe laboratory characteristics of these infections. METHODS: Whole genome sequencing and conventional methods were combined to thoroughly investigate the outbreaks, and data of contemporaneous sporadic cases was included for comparison. RESULTS: Seven sequence types (ST) of C. jejuni caused 83 cases, including ST9079 which recurred across two years. Trace-back investigation could not identify any food items of infection, but detected identical campylobacters from food contacts. Phylogenetic analysis unveiled genetic closeness between outbreak strains and some concurrent sporadic strains, indicating local campylobacteriosis may not be wholly sporadic but rather a series of linked cases. Virulence genes disclosed species/case-specific signatures to differentiate outbreak from truly non-outbreak strains. Resistance to fluoroquinolones and/or macrolides was prevalent (90.8%, 108/119), with a noteworthy portion exhibiting multidrug resistance (31.1%, 37/119). Five types of plasmids were harbored among outbreak isolates, which one plasmid harboring anti-stress and resistant genes was rarely found in C. jejuni. CONCLUSIONS: This is the first reported sequential outbreaks of C. jejuni in China. Our observations help to define the genomic landscape and antimicrobial resistance patterns of Campylobacter, emphasizing the need for a broader 'One Health' perspective to combat the threats posed by campylobacteriosis.

2.
Front Immunol ; 15: 1346878, 2024.
Article in English | MEDLINE | ID: mdl-38590522

ABSTRACT

Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1ß and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.


Subject(s)
Herpesviridae Infections , Virus Diseases , Humans , Inflammasomes/metabolism , Caspase 1/metabolism , Signal Transduction
3.
Article in English | MEDLINE | ID: mdl-38684027

ABSTRACT

Capillary force driven self-assembly micropillars (CFSA-MP) holds immense promise for the manipulation and capture of cells/tiny objects, which has great demands of wide size range and high robustness. Here, we propose a novel method to fabricate size-adjustable and highly robust CFSA-MP that can achieve wide size range and high stability to capture microspheres. First, we fabricate a microholes template with an adjustable aspect ratio using the spatial-temporal shaping femtosecond laser double-pulse Bessel beam-assisted chemical etching technique, and then the micropillars with adjustable aspect ratio are demolded by polydimethylsiloxane (PDMS). We fully demonstrated the advantages of the Bessel optical field by using the spatial-temporal shaping femtosecond laser double-pulse Bessel beams to broaden the height range of the micropillars, which in turn expands the size range of the captured microspheres, and finally achieving a wide range of capturing microspheres with a diameter of 5-410 µm. Based on the inverted mold technology, the PDMS micropillars have ultrahigh mechanical robustness, which greatly improves the durability. CFSA-MP has the ability to capture tiny objects with wide range and high stability, which indicates great potential applications in the fields of chemistry, biomedicine, and microfluidics.

4.
J Headache Pain ; 25(1): 29, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454376

ABSTRACT

BACKGROUND: Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS: Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS: Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1ß, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS: AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.


Subject(s)
Migraine Disorders , Nitroglycerin , Mice , Animals , Nitroglycerin/adverse effects , Microglia/metabolism , AMP-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Calcitonin Gene-Related Peptide/metabolism , Central Nervous System Sensitization/physiology , Neurogenic Inflammation/metabolism , Pain/metabolism , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Migraine Disorders/metabolism
5.
Psychiatry Res ; 335: 115868, 2024 May.
Article in English | MEDLINE | ID: mdl-38554494

ABSTRACT

Bipolar disorder (BD) across different clinical stages may present shared and distinct changes in brain activity. We aimed to reveal the neuroimaging homogeneity and heterogeneity of BD and its relationship with clinical variables and genetic variations. In present study, we conducted fractional amplitude of low-frequency fluctuations (fALFF), functional connectivity (FC) and genetic neuroimaging association analyses with 32 depressed, 26 manic, 35 euthymic BD patients and 87 healthy controls (HCs). Significant differences were found in the bilateral pre/subgenual anterior cingulate cortex (ACC) across the four groups, and all bipolar patients exhibited decreased fALFF values in the ACC when compared to HCs. Furthermore, positive associations were significantly observed between fALFF values in the pre/subgenual ACC and participants' cognitive functioning. No significant changes were found in ACC-based FC. We identified fALFF-alteration-related genes in BD, with enrichment in biological progress including synaptic and ion transmission. Taken together, abnormal activity in ACC is a characteristic change associated with BD, regardless of specific mood stages, serving as a potential neuroimaging feature in BD patients. Our genetic neuroimaging association analysis highlights possible heterogeneity in biological processes that could be responsible for different clinical stages in BD.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Genetic Profile , Magnetic Resonance Imaging/methods , Neuroimaging , Gyrus Cinguli/diagnostic imaging , Brain/diagnostic imaging
6.
Anal Methods ; 16(3): 465-473, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38167895

ABSTRACT

Garlic is famous for its unique flavor and health benefits. An effective means of authenticating garlic's origin is through the implementation of the Protected Geographical Indication (PGI) scheme. However, the prevalence of fraudulent behavior raises concerns regarding the reliability of this system. In this study, garlic samples from six distinct production areas (G1: Cangshan garlic, G2: Qixian garlic, G3: Dali single clove garlic, G4: Jinxiang garlic, G5: Yongnian garlic, and G6: Badong garlic) underwent analysis using HS-GC-IMS. A total of 26 VOCs were detected in the samples. The differences in VOCs among the different garlic samples were visually presented in a two-dimensional topographic map and fingerprint map. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to demonstrate the capacity of the HS-GC-IMS method for effectively distinguishing garlic samples from different geographical sources. Further screening based on the p-value and VIP score threshold identified 12 different aroma substances, which can be utilized for the identification of garlic from different producing areas. The fusion of HS-GC-IMS with multivariate statistical analysis proved to be a rapid, intuitive, and efficient approach for identifying and categorizing garlic VOCs, offering a novel strategy for ascertaining garlic origin and ensuring quality control.


Subject(s)
Garlic , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Reproducibility of Results , Volatile Organic Compounds/analysis , Multivariate Analysis
7.
Cell Rep ; 42(12): 113497, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38041813

ABSTRACT

Peptic ulcer disease caused by environmental factors increases the risk of developing gastric cancer (GC), one of the most common and deadly cancers in the world. However, the mechanisms underlying this association remain unclear. A major type of GC uniquely undergoes spasmolytic polypeptide-expressing metaplasia (SPEM) followed by intestinal metaplasia. Notably, intestinal-type GC patients with high levels of YAP signaling exhibit a lower survival rate and poor prognosis. YAP overexpression in gastric cells induces atrophy, metaplasia, and hyperproliferation, while its deletion in a Notch-activated gastric adenoma model suppresses them. By defining the YAP targetome genome-wide, we demonstrate that YAP binds to active chromatin elements of SPEM-related genes, which correlates with the activation of their expression in both metaplasia and ulcers. Single-cell analysis combined with our YAP signature reveals that YAP signaling is activated during SPEM, demonstrating YAP as a central regulator of SPEM in gastric neoplasia and regeneration.


Subject(s)
Peptides , Stomach Neoplasms , Humans , Peptides/metabolism , Stomach , Intercellular Signaling Peptides and Proteins/metabolism , Stomach Neoplasms/genetics , Metaplasia/metabolism , Gastric Mucosa/metabolism
8.
J Evid Based Med ; 16(4): 505-519, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100480

ABSTRACT

BACKGROUND: Scalp stimulation has gained more traction for post-stroke cognitive impairment and dementia (PSCID); the interaction between stimulation targets and parameters influences the response to the stimulation. However, the most efficacious treatment for improving different domains of cognitive impairment remains unknown. OBJECTIVE: We aimed to conduct a systematic review and network meta-analysis (NMA) to compare the efficacy of various scalp stimulation protocols used in PSCID treatment. METHODS: Randomized controlled trials of scalp stimulation in patients with PSCID were searched in eight databases over the past 20 years. Standardized mean differences (SMDs) for global and subdomain cognitive scores were pooled in Bayesian NMA. Moderators were examined using meta-regression analysis. RESULTS: A total of 90 trials, with 6199 patients, were included. Low-frequency repetitive transcranial magnetic stimulation (rTMS) over the unaffected dorsolateral prefrontal cortex (DLPFC) was highly suggested for alleviating global severity (SMD = 1.11, 95% CI (0.64, 1.57)). High-frequency rTMS over the left DLPFC was recommended for language use (1.85 (1.18, 2.52)), executive function (0.85 (0.36, 1.33)), orientation deficits (0.59 (0.07, 1.13)), and attention (0.85 (0.27, 1.43)). Anodal transcranial direct current stimulation over the affected DLPFC (2.03 (0.72, 3.34)) was recommended for treating memory impairment. Meta-regression analyses showed significant associations within attention, language and orientation. CONCLUSION: Overall, different cognitive domains have different optimal scalp stimulation prescriptions, and activating the affected key brain regions and inhibiting the unaffected area is still the most effective treatment.


Subject(s)
Cognitive Dysfunction , Dementia , Stroke , Transcranial Direct Current Stimulation , Humans , Bayes Theorem , Network Meta-Analysis , Scalp , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Stroke/complications , Dementia/complications , Dementia/therapy
9.
Front Pharmacol ; 14: 1147964, 2023.
Article in English | MEDLINE | ID: mdl-38146459

ABSTRACT

Objective: To systematically evaluate the efficacy and safety of the Chinese medicine detoxification and dredging collaterals in treating carotid atherosclerosis (CAS). Methods: A systematic and comprehensive search of nine relevant domestic and international databases were conducted from their inception until June 2022. The methodological quality of the included trials was evaluated, and the efficacy and safety were comprehensively analyzed. After applying the inclusion and exclusion criteria to the randomized controlled trials (RCTs), the research quality evaluation and data extraction were conducted, followed by a meta-analysis of the selected articles. The Cochrane's Bias risk assessment was utilized to evaluate the quality of the evidence. Results: Of the 2,660 studies initially retrieved, 14 studies were included, involving a total of 1,518 patients. The results of the meta-analysis indicated that the clinical efficacy of the Detoxification and Collateral Dredging method in the treatment of CAS was superior to that of western medicine treatment alone, and the difference was statistically significant [RR = 1.23, 95% CI (1.13, 1.34)] Furthermore, carotid intima-media thickness [Mean Difference (MD) = -0.10, 95% CI (-0.13, -0.08)] and Crouse plaque score [MD = -0.54, 95% CI (-0.75, -0.32)] were significantly lower in the Detoxification and Collateral Dredging group compared to the pure western medicine treatment group. The difference was statistically significant. In addition, serum total cholesterol [MD = -0.70, 95% CI (-0.85, -0.55)] and low-density lipoprotein cholesterol [MD = -0.70, 95% CI (-0.85, -0.55)] were lower in the Detoxification and Collateral Dredging group than in the Western medicine group, with all differences being statistically significant. Serum high-density lipoprotein cholesterol was higher in the Detoxification and Collateral Dredging group compared to the pure western medicine group, and the difference was statistically significant [MD = 0.17, 95% CI (0.11, 0.23)]. Conclusion: The use of Chinese medicine Detoxification and Collateral Dredging approach in the treatment of CAS may offer benefits in improving carotid atherosclerotic plaque and reducing blood lipid levels, with a safety profile superior to that of western medicine treatment alone.

10.
J Exp Clin Cancer Res ; 42(1): 255, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773152

ABSTRACT

BACKGROUND: Chronic stress promotes most hallmarks of cancer through impacting the malignant tissues, their microenvironment, immunity, lymphatic flow, etc. Existing studies mainly focused on the roles of stress-induced activation of systemic sympathetic nervous system and other stress-induced hormones, the organ specificity of chronic stress in shaping the pre-metastatic niche remains largely unknown. This study investigated the role of chronic stress in remodeling lung pre-metastatic niche of breast cancer. METHODS: Breast cancer mouse models with chronic stress were constructed by restraint or unpredictable stress. Expressions of tyrosine hydroxylase, vesicular acetylcholine transporter (VAChT), EpCAM and NETosis were examined by immunofluorescence and confocal microscopy. mRNA and protein levels of choline acetyltransferase (ChAT), VAChT, and peptidylarginine deiminase 4 were detected by qRT-PCR and Western blotting, respectively. Immune cell subsets were analyzed by flow cytometry. Acetylcholine (ACh) and chemokines were detected by ELISA and multi chemokine array, respectively. ChAT in lung tissues from patients was examined by immunohistochemistry. RESULTS: Breast cancer-bearing mice suffered chronic stress metastasized earlier and showed more severe lung metastasis than did mice in control group. VAChT, ChAT and ChAT+ epithelial cells were increased significantly in lung of model mice undergone chronic stress. ACh and chemokines especially CXCL2 in lung culture supernatants from model mice with chronic stress were profoundly increased. Chronic stress remodeled lung immune cell subsets with striking increase of neutrophils, enhanced NETosis in lung and promoted NETotic neutrophils to capture cancer cells. ACh treatment resulted in enhanced NETosis of neutrophils. The expression of ChAT in lung tissues from breast cancer patients with lung metastasis was significantly higher than that in patients with non-tumor pulmonary diseases. CONCLUSIONS: Chronic stress promotes production of CXCL2 that recruits neutrophils into lung, and induces pulmonary epithelial cells to produce ACh that enhances NETosis of neutrophils. Our findings demonstrate for the first time that chronic stress induced epithelial cell derived ACh plays a key role in remodeling lung pre-metastatic niche of breast cancer.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Mice , Animals , Female , Acetylcholine/metabolism , Membrane Transport Proteins/metabolism , Lung , Epithelial Cells/metabolism , Chemokines , Tumor Microenvironment
11.
Opt Express ; 31(18): 28670-28682, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710683

ABSTRACT

Antireflective microstructures fabricated using femtosecond laser possess wide-ranging applicability and high stability across different spectral bands. However, due to the limited aspect ratio of the focused light field, traditional femtosecond laser manufacturing faces challenges in efficiently fabricating antireflective microstructures with high aspect ratio and small period, which are essential for antireflection, on curved surfaces. In this study, we present a robust and efficient method for fabricating high-aspect-ratio and basal surface insensitive antireflective microstructures using a spatially shaped Bessel-like beam. Based on theoretical simulation, a redesigned telescopic system is proposed to flexibly equalize the intensity of the Bessel beam along its propagation direction, facilitating the fabrication of antireflective subwavelength structures on the entire convex lens. The fabricated microstructures, featuring a width of less than 2 µm and a depth of 1 µm, enhance transmittance from 75% to 85% on Diamond-ZnS composite material (D-ZnS) surfaces. Our approach enables the creation of high aspect ratio subwavelength structures with a z-position difference exceeding 600 µm. This practical, efficient, and cost-effective method is facilitated for producing antireflective surfaces on aero-optical components utilized in aviation.

12.
ACS Appl Mater Interfaces ; 15(34): 41092-41100, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37599436

ABSTRACT

In extreme environments, fog formation on a microlens array (MLA) surface results in a device failure. One reliable solution for fog removal is to heat the surface using a microheater. However, due to the surface interference, the combination of these two microdevices remains elusive. In this study, we introduce lift-off and electroless plating into femtosecond laser processing to fabricate a microheater integrated MLA (µH-MLA) on the same substrate with high light transmittance, durability, and fog removal efficiency. Laser-induced micro-nano grooves enable the microheater to be tightly coupled with the MLA and have high heating performance, thus maintaining a stable performance for over 24 h during continuous operation as well as under long time ultrasonic vibration and mechanical friction. With a rapid response time (τ0.5) of 17 s and a high working temperature of 188 °C, the µH-MLA removed fog that covers the entire face within 14 s. Finally, we prove the use of this fabrication method in large areas and curved surface environments. This study provides a flexible, stable, and economical method to integrate micro-optical and microelectrical devices.

13.
Emerg Microbes Infect ; 12(2): 2252522, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37616379

ABSTRACT

Vibrio metschnikovii is an emergent pathogen that causes human infections which may be fatal. However, the phylogenetic characteristics and pathogenicity determinants of V. metschnikovii are poorly understood. Here, the whole-genome features of 103 V. metschnikovii strains isolated from different sources are described. On phylogenetic analysis V. metschnikovii populations could be divided into two major lineages, defined as lineage 1 (L1) and 2 (L2), of which L1 was more likely to be associated with human activity. Meanwhile, we defined 29 V. metschnikovii O-genotypes (VMOg, named VMOg1-VMOg29) by analysis of the O-antigen biosynthesis gene clusters (O-AGCs). Most VMOgs (VMOg1 to VMOg28) were assembled by the Wzx/Wzy pathway, while only VMOg29 used the ABC transporter pathway. Based on the sequence variation of the wzx and wzt genes, an in silico O-genotyping system for V. metschnikovii was developed. Furthermore, nineteen virulence-associated factors involving 161 genes were identified within the V. metschnikovii genomes, including genes encoding motility, adherence, toxins, and secretion systems. In particular, V. metschnikovii was found to promote a high level of cytotoxicity through the synergistic action of the lateral flagella and T6SS. The lateral flagellar-associated flhA gene played an important role in the adhesion and colonization of V. metschnikovii during the early stages of infection. Overall, this study provides an enhanced understanding of the genomic evolution, O-AGCs diversity, and potential pathogenic features of V. metschnikovii.


Subject(s)
O Antigens , Vibrio , Humans , Phylogeny , Virulence , Vibrio/genetics , Virulence Factors/genetics
14.
Mol Phylogenet Evol ; 188: 107903, 2023 11.
Article in English | MEDLINE | ID: mdl-37574177

ABSTRACT

Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.


Subject(s)
Anti-Bacterial Agents , Virulence Factors , Animals , Cattle , Virulence Factors/genetics , Multilocus Sequence Typing/methods , Phylogeny , Drug Resistance, Bacterial/genetics , Yersinia/genetics , Genetic Variation , Genome, Bacterial
15.
Int J Biol Macromol ; 245: 125531, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37355073

ABSTRACT

Nitrile hydratase (NHase) has been extensively utilized in industrial acrylamide production. However, the vulnerability to high concentrations of acrylamide limits its further application. Herein, we redesigned the N-terminal loop at the tetramer interface of a thermophilic NHase from Pseudonocardia thermophila JCM3095 (PtNHase), and its catalytic activity, resistance to high acrylamide concentrations, and thermostability were improved. Amino acid residues located in the N-terminal loop of the tetramer interface that are responsible for enhancing the resistance to high acrylamide concentrations were identified via static structural analysis and molecular dynamics simulations. A variant library was used to fine-tune the tetramer interface. Variant αL6T exhibited 3.5-fold greater resistance to 50% (v/v) acrylamide, whereas its activity was 1.2-fold higher than that of the wild-type (WT) enzyme, revealing no activity-stability trade-off. Compared to the use of Escherichia coli harboring the WT enzyme, the use of E. coli harboring αL6T increased the acrylamide concentration from 398.1 g/L to 500 g/L. Crystal structure-guided analysis of αL6T and molecular dynamics simulations revealed that increased enzyme surface hydration and the introduction of positive cross-correlation into the N-terminal loop of the tetramer interface caused the two loop regions to hook to each other, thus improving the resistance to high acrylamide concentrations.


Subject(s)
Amides , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Acrylamide , Hydro-Lyases/metabolism
16.
Front Vet Sci ; 10: 1160583, 2023.
Article in English | MEDLINE | ID: mdl-37360404

ABSTRACT

African swine fever (ASF), caused by ASF virus (ASFV), is a highly contagious and lethal disease of domestic pigs leading to tremendous economic losses. As there are no vaccines and drugs available. An effective diagnosis to eliminate ASFV-infected pigs is a crucial strategy to prevent and control ASF. To this end, ASFV capsid protein p72 was expressed using Chinese hamster ovary (CHO) cells and subsequently conjugated with horseradish peroxidase (HRP) to develop a one-step double-antigen sandwich enzyme-linked immunosorbent assay (one-step DAgS-ELISA). The performance of this ELISA for detecting ASFV antibodies was evaluated. Overall, a diagnostic sensitivity of 97.96% and specificity of 98.96% was achieved when the cutoff value was set to 0.25. No cross-reaction with healthy pig serum and other swine viruses was observed. The coefficients of variation of the intra-assay and inter-assay were both <10%. Importantly, this ELISA could detect antibodies in standard serum with 12,800-fold dilution, and seroconversion started from the 7th day post-inoculation (dpi), showing excellent analytical sensitivity and great utility. Furthermore, compared to the commercial kit, this ELISA had a good agreement and significantly shorter operation time. Collectively, a novel one-step DAgS-ELISA for detecting antibodies against ASFV is developed, which will be reliable and convenient to monitor ASFV infection.

17.
J Appl Microbiol ; 134(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36807689

ABSTRACT

AIMS: Cronobacter spp. are emerging food-borne pathogens capable of causing life-threatening illness via several distinct routes. Although endeavors to reduce the incidence of Cronobacter infections are implemented, potential risk of these microorganisms on food safety remains poorly understood. Here, we evaluated the genomic features of clinical Cronobacter and the possible food reservoirs of these infections. METHODS AND RESULTS: Whole-genome sequencing (WGS) data of all human clinical cases (n = 15) during 2008-2021 in Zhejiang were used and compared to sequenced Cronobacter genomes (n = 76) representing various food products. Cronobacter strains exhibited a high degree of genetic diversity by WGS-based subtyping. A variety of serotypes (n = 12) and sequence types (n = 36) were identified, including six novel STs (ST762-ST765, ST798, and ST803) first-time described in this study. Nine clinical clusters representing 12/15 (80%) patients match a potential food source. Genomic insights into virulence genes revealed species/hosts specificity signatures associated with autochthonous populations. Resistance to streptomycin, azithromycin, sulfanilamide isoxazole, cefoxitin, amoxicillin, ampicillin, and chloramphenicol, as well as multidrug resistance, was noted. WGS data can be used to predict resistance phenotypes in amoxicillin, ampicillin, and chloramphenicol, which were extensively used in clinical treatment. CONCLUSIONS: The wide dissemination of pathogenic potential and antibiotic-resistant strains in multiple food sources emphasized the importance of rigorous food safety policies to reduce Cronobacter contamination in China.


Subject(s)
Cronobacter , Humans , Cronobacter/genetics , Food Microbiology , Chloramphenicol , Genomics , Ampicillin , Amoxicillin
18.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835408

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.


Subject(s)
Coronavirus Infections , Host-Pathogen Interactions , Porcine epidemic diarrhea virus , Sodium-Potassium-Exchanging ATPase , Swine Diseases , Animals , CD13 Antigens/metabolism , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Receptors, Virus/metabolism , RNA, Double-Stranded , RNA, Small Interfering , Swine , Swine Diseases/metabolism , Vero Cells , Virus Attachment , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Sodium-Potassium-Exchanging ATPase/metabolism
19.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674446

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a vertically transmitted reproductive disorder that is typically characterized by miscarriage, premature birth, and stillbirth in pregnant sows after infection. Such characteristics indicate that PRRSV can infect and penetrate the porcine placental barrier to infect fetus piglets. The porcine trophoblast is an important component of the placental barrier, and secretes various hormones, including estrogen and progesterone, to maintain normal pregnancy and embryonic development during pregnancy. It is conceivable that the pathogenic effects of PRRSV infection on porcine trophoblast cells may lead to reproductive failure; however, the underlying detailed mechanism of the interaction between porcine trophoblast (PTR2) cells and PRRSV is unknown. Therefore, we conducted genome-wide mRNA and long non-coding RNA (lncRNA) analysis profiling in PRRSV-infected PTR2. The results showed that 672 mRNAs and 476 lncRNAs were significantly different from the control group after viral infection. Target genes of the co-expression and co-location of differential mRNAs and lncRNAs were enriched by GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that most of the pathways were involved in cell nutrient metabolism, cell proliferation, and differentiation. Specifically, the estrogen signaling pathway, the PI3K (PhosphoInositide-3 Kinase)-Akt (serine/threonine kinase) signaling pathway, and the insulin secretion related to embryonic development were selected for analysis. Further research found that PRRSV inhibits the expression of G-protein-coupled estrogen receptor 1 (GPER1), thereby reducing estrogen-induced phosphorylation of AKT and the mammalian target of rapamycin (mTOR). The reduction in the phosphorylation of AKT and mTOR blocks the activation of the GPER1- PI3K-AKT-mTOR signaling pathway, consequently restraining insulin secretion, impacting PTR2 cell proliferation, differentiation, and nutrient metabolism. We also found that PRRSV triggered trophoblast cell apoptosis, interrupting the integrity of the placental villus barrier. Furthermore, the interaction network diagram of lncRNA, regulating GPER1 and apoptosis-related genes, was constructed, providing a reference for enriching the functions of these lncRNA in the future. In summary, this article elucidated the differential expression of mRNA and lncRNA in trophoblast cells infected with PRRSV. This infection could inhibit the PI3K-AKT-mTOR pathway and trigger apoptosis, providing insight into the mechanism of the vertical transmission of PRRSV and the manifestation of reproductive failure.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , Swine , Animals , Female , Pregnancy , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Long Noncoding/genetics , Trophoblasts , RNA, Messenger/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt , Placenta , Porcine Reproductive and Respiratory Syndrome/genetics , TOR Serine-Threonine Kinases , Estrogens , Mammals/genetics
20.
Front Public Health ; 11: 1271469, 2023.
Article in English | MEDLINE | ID: mdl-38174074

ABSTRACT

Background: China's rapid economic and social development since the early 2000s has caused significant shifts in its epidemiological transition, potentially leading to health disparities across regions. Objectives: This study employs Life Expectancy (LE) to assess health disparities and trends among China's eastern, central, and western regions. It also examines the pace of LE gains relative to empirical trends and investigates age and causes of death mortality improvement contributing to regional LE gaps. Data and methods: Using a log-quadratic model, the study estimates LE in China and its regions from 2004 to 2020, using census and death cause surveillance data. It also utilizes the Human Mortality Database (HMD) and the LE gains by LE level approach to analyze China and its regions' LE gains in comparison to empirical trend of developed countries. The study investigates changes in LE gaps due to age and causes of death mortality improvements during two periods, 2004-2012 and 2012-2020, through the LE factor decomposition method. Results: From 2000 to 2020, China's LE exhibited faster pace of gains compared to developed countries. While men's LE growth gradually aligns with empirical trends, women experience slightly higher growth rates. Regional LE disparities significantly reduced from 2004 to 2012, with a marginal reduction from 2012 to 2020. In the latter period, the changing LE gap aligns with expected trends in developed countries, with all Chinese regions surpassing empirical estimates. Cardiovascular diseases and malignant neoplasms emerged as the primary contributors to expanding regional LE gaps, with neurological disorders and diabetes playing an increasingly negative role. Conclusion: LE disparities in China have consistently decreased, although at a slower pace in recent years, mirroring empirical trends. To further reduce regional LE disparities, targeted efforts should focus on improving mortality rates related to cardiovascular diseases, neoplasms, neurological disorders and diabetes, especially in the western region. Effective health interventions should prioritize equalizing basic public health services nationwide.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Nervous System Diseases , Male , Humans , Female , Cause of Death , Life Expectancy , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...